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1 Introduction

Holographic QCD has provided an insightful look to a number of issues in baryonic physics

at strong coupling λ = g2Nc and large number of colors Nc [1–10]. In particular, in [1, 2]

baryons are constructed from a five-dimensional Shrodinger-like equation whereby the 5th

dimension generates mass-like anomalous dimensions through pertinent boundary condi-

tions. A number of baryonic properties have followed ranging from baryonic spectra to

form factors [1, 2].

At large Nc baryons are chiral solitons in QCD. A particularly interesting framework

for discussing this scenario is the D8-D8 chiral holographic model recently suggested by

Sakai and Sugimoto [3, 11] (herethrough hQCD). In hQCD D4 static instantons in bulk

source the chiral solitons or Skyrmions on the boundary. The instantons have a size of

order 1/
√
λ and a mass of order Ncλ in units of MKK, the Kaluza-Klein scale [3]. The

static Skyrmion is just the instanton holonomy in the z-direction

U(~x) = Pe−i
R ∞
−∞

dzAz(~x,z) , (1.1)

where Az is the 5-dimensional ADHM instanton. The static 3-dimensional Skyrmion is

sourced by a static 4-dimensinal flavour instanton embedded in D8-D8.

In the past the Skyrmion-Skyrmion interaction was mostly analyzed using the product

ansatz [12] or some variational techniques [13]. While the product ansatz reveals a pionic

tail in the spin and tensor channels, it lacks the intermediate range attraction in the scalar

channel expected from two-pion exchange. In fact the scalar potential to order Nc is found

to be mostly repulsive, and therefore unsuited for binding nuclear matter at large Nc. The

core part of the Skyrmion-Skyrmion interaction in the product of two Skyrmions is ansatz

dependent. In [14] it was shown that the ansatz dependence could be eliminated in the

two-pion range by adding the pion cloud to the core Skyrmions. In a double expansion

using large Nc and the pion-range, a scalar attraction was shown to develop in the two-

pion range in the scalar channel [14]. The expansion gets quickly involved while addressing

shorter ranges or core interactions.

In this paper we analyze the two-baryon problem using the D4 two-instanton solu-

tion [15] to order Nc/λ. The ensuing Skyrmion-Skyrmion interaction is essentially that of

the two cores and the meson cloud composed of (massles) pions and vector mesons. At

strong coupling, holography fixes the core interactions in a way that the Skyrme model

does not. Although in QCD very short ranged interactions are controlled by asymptotic

freedom, the core interactions at intermediate distances maybe still in the realm of strong

coupling and therefore unamenable to QCD perturbation theory. In this sense, holography

will be helpful. Also, in holographic QCD the mesonic cloud including pions and vectors is

naturally added to the core Skyrmions in the framework of semiclassics. These issues will

be quantitatively addressed in this paper.

In section 2, we review the ADHM construction for one and two-instanton following

on recent work in [15]. In section 3, we show how this construction translates to the one

and two baryon configuration in holography. In section 4, we construct the bare or core

Skyrmion-Skyrmion interaction for defensive and combed Skyrmions. We unwind the core
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Skyrmion-Skyrmion interaction at large separations in terms of a dominant Coulomb repul-

sion in regular gauge. Core issues related to the singular gauge are also discussed. In section

5, we project the core Skyrmion-Skyrmion contributions onto the core nucleon-nucleon con-

tributions at large separation using semiclassics in the adiabatic approximation. In section

6, we include the effects of the mesonic cloud to order Nc/λ in the Born-Oppenheimer

approximation. At large separations, the cloud contributions yield a tower of meson ex-

changes. In section 7, we summarize the general structure of the NN potential as a core

plus cloud contribution in holographic QCD. Our conclusions are in section 8. In appendix

A we detail the k = 1, 2 instantons in the singular gauge. In appendix B, we revisit the

core interaction in the singular gauge. In appendix C, we check our semiclassical cloud

calculations in the regular gauge, using the strong coupling source theory in the singular

gauge. In appendix D we detail our nucleon axial-form factor and the extraction of the

axial coupling gA.

2 YM instantons from ADHM

The starting point for baryons in holographic QCD are instantons in flat R3
X × RZ . In

this section we briefly review the ADHM construction [16] for SU(2) Yang-Mills instantons.

Below SU(2) will be viewed as a flavor group associated to D8-D8 branes. For a thorough

presentation of the ADHM construction we refer to [17] and references therein.

In the ADHM construction, all the instanton information is encoded in the matrix-data

whose elements are quaternions q. The latters are represented as

q ≡ qMσ
M , σM ≡ (iτ i,1) , (2.1)

with M = 1, 2, 3, 4, 1 ≡ 12×2, and τ i the standard Pauli matrices. qM are four real

numbers. The conjugate (q†) and the modulus (‖q‖) of the quaternion, are defined as

q† ≡ qM (σM )†, ‖q‖2 ≡ q†q = qq† = | q|1 =
∑

M

q2M1 , (2.2)

Re q ≡ q + q†

2
= q0σ

0 , Im q ≡ q − q†

2
=
∑

i

qiσ
i , (2.3)

where | q| is the determinant of a matrix q. For clarity, our label conventions are:

M,N,P,Q ∈ {1, 2, 3, 4}, µ, ν, ρ, σ,∈ {0, 1, 2, 3}, and i, j, k, l ∈ {1, 2, 3} with z ≡ x4.

The flavor SU(2) group indices are a, b ∈ {1, 2, 3}.
The basic block in the matrix-data is the (1+k)×k matrix, ∆, for the charge k instanton

∆ = A + B ⊗ x , (2.4)

where A and B are x-independent (1 + k) × k quaternionic matrices with information on

the moduli parameters. We define x = xMσ
M and B ⊗ x means that each element B is

multiplied by x. A and B are not arbitrary. They follow from the ADHM constraint

∆†∆ = f−1 ⊗ 1 , (2.5)

– 3 –
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where ∆† is the transpose of the quaternionic conjugate of ∆. f is a k × k invertible

quaternionic matrix. f−1 ⊗ 1 means each element f−1 is multiplied by 1. The null-space

of ∆† is 2-dimensional since it has 2 fewer rows than columns. The basis vectors for this

null-space can be assembled into an (1 + k) × 1 quaternionic matrix U

∆†U = 0 , (2.6)

where U is normalized as

U †U = 1 . (2.7)

The instanton gauge field Aµ is constructed as

AM = iU †∂MU , (2.8)

which yields the field strengths

FMN = −2ηaMNU
†
B(f ⊗ τa)B†U . (2.9)

Self-duality is explicit from ’t Hooft’s self-dual eta symbol

ηaMN = −ηaNM =

{
ǫaMN for M,N = 1, 2, 3

δaM for N = 4
. (2.10)

The action density, trF 2
MN , can be calculated directly from f , without recourse to the

null-space U and FMN [18]

trF 2
MN = �

2 log |f | , (2.11)

where � ≡ ∂2
M , �

2 = ∂2
N∂

2
M , and |f | is the determinant of f .

2.1 k = 1 instanton

The k = 1 instanton in the regular gauge is encoded in a quaternionic matrix ∆

∆ ≡
(

λ

−x+X

)
, ∆† ≡

(
λ† (−x+X)†

)
, (2.12)

which yields

f−1 = ρ2 + (xM −XM )2 , (2.13)

after using (2.5). Here ρ (=
√
λ2

M ) is the size and {XM} is the position of the one instanton.

The field strength is

FMN = WηaMN
τa

2

−4ρ2

((xM −XM )2 + ρ2)2
W † , (2.14)

which follows from (2.9) with

U =
ρ√

(xM −XM )2 + ρ2

(
−λ(x−X)†

ρ2

1

)
W † , B =

(
0

−1

)
, (2.15)
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where ρ2 ≡ λ†λ and W ∈ SU(2). The action density follows from (2.14) or (2.11)

trF 2
MN = �

2 log f =
96ρ4

((xM −XM )2 + ρ2)4
, (2.16)

which gives the instanton number 1
16π2

∫
d4xtrF 2

MN = 1 by self duality. The k = 1 instan-

ton in the singular gauge is detailed in appendix A.

2.2 k = 2 instanton

A charge 2 (k = 2) instanton in the regular gauge is encoded in a quaternionic matrix ∆ [15]

∆ ≡




λ1 λ2

−
[
x− (X +D)

]
u

u −
[
x− (X −D)

]


 , (2.17)

where the coordinates xM are defined as x = xMσ
M , and the moduli parameters

are encoded in the free parameters λ1, λ2,X,D: |λi| ≡ ρi1 are the size parameters,

λ†1λ2/(ρ1ρ2) ∈ SU(2) is the relative gauge orientation, and X ± D is the location of the

constituents. u is not a free parameter and will be determined in terms of other moduli

parameters by the ADHM constraint (2.5).

Since we are interested in the relative separation we set X = 0, so that

∆ =




λ1 λ2

D − x u

u −D − x


 , ∆† ≡

(
λ†1 (D − x)† u†

λ†2 u† (−D − x)†

)
, (2.18)

which yields

∆†∆=

(
‖λ1‖2 + ‖x−D‖2 + ‖u‖2 λ†1λ2 +D†u− u†D − (x†u+ u†x)[

λ†1λ2 +D†u− u†D − (x†u+ u†x)
]† ‖λ2‖2 + ‖x+D‖2 + ‖u‖2

)
. (2.19)

The ADHM constraint (2.5) implies that each entry must be proportional to 1. The

diagonal terms satisfy the constraint. The off-diagonal entries are also proportional to 1

provided that u is chosen to be

u =
DΛ

2 |D|2
+ γD , Λ ≡ Im(λ†2λ1) =

1

2
(λ†2λ1 − λ†1λ2) , (2.20)

with γ an arbitrary real constant. The coordinate u is the inverse of the coordinate D. It

plays the role of the dual distance. Throughout we follow [15] and choose γ = 0 for a physi-

cal identification of the moduli parameters. By that we mean a k = 2 configuration which is

the closest to the superposition of two instantons in the regular gauge at large separation.

In appendix A, we briefly discuss a minimal k = 2 configuration in the singular gauge.

Inserting u into (2.19) yields

f−1 =


ρ

2
1 + (xM −DM )2 +

ρ2
1
ρ2
2
−(λ1·λ2)2

4D2
M

λ1 · λ2 + 2x · u
λ1 · λ2 + 2x · u ρ2

2 + (xM +DM )2 +
ρ2
1
ρ2
2
−(λ1·λ2)2

4D2
M


 , (2.21)
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where we introduced the notation q · p for two quaternions q and p

q · p ≡
∑

M

qMpM . (2.22)

ρi =
√
λi · λi are the size parameters, ±DM the relative positions of the instantons, and

2x · u =
1

D ·D
[
(λ2 ·D)(λ1 · x) − (λ1 ·D)(λ2 · x) − ǫMNPQ(λ2)M (λ1)NDPxQ

]
. (2.23)

We made use of the identity

σP σ̄MN = δPMσN − δPNσM − ǫPMNQσQ ,

σ̄MN ≡ 1

2
(σ̄MσN − σ̄NσM ) , ǫ1234 = 1 . (2.24)

2.3 Explicit parametrization

Without loss of generality, we may choose the moduli parameters to be

λ1 = ρ1 (0, 0, 0, 1) , λ2 = ρ2

(
θ̂a sin| θ| , cos| θ|

)
, D =

(
d

2
, 0, 0, 0

)
, (2.25)

with a = 1, 2, 3, | θ| ≡
√

(θ1)2 + (θ2)2 + (θ3)2 and θ̂a ≡ θa

| θ| . The spatial x1 axis is chosen

as the separation axis of two instantons at large distance d. The flavor orientation angles

(θa) are relative to the λ1 orientation. We assign an SU(2) matrix U to the relative angle

orientations in flavor space

U ≡ λ†1λ2

ρ1ρ2
= eiθaτa ∈ SU(2) , (2.26)

which is associated with the orthogonal SO(3) rotation matrix R as

Rab =
1

2
tr
(
τaUτbU

†
)

= δab cos 2| θ| + 2θ̂aθ̂b sin2| θ| + ǫabcθ̂c sin 2| θ| . (2.27)

For instance Rab reads




cos 2θ3 sin 2θ3 0

− sin 2θ3 cos 2θ3 0

0 0 1


 ,




1 0 0

0 cos 2θ1 sin 2θ1
0 − sin 2θ1 cos 2θ1


 , (2.28)

for θ1 = θ2 = 0 and θ2 = θ3 = 0 respectively. Note the double covering in going from

SU(2) to SO(3).

In this coordination for the moduli space,

Λ = ρ1Im(λ†2) = ρ1ρ2(−iθ̂aτ
a sin| θ|) , (2.29)

u =
DΛ

2 |D|2
=
iτ1Λ

d
=
ρ1ρ2

d
sin| θ| θ̂aτ

1τa , (2.30)

– 6 –
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uM =
ρ1ρ2

d
sin| θ|

(
0,−θ̂3, θ̂2, θ̂1

)
, (2.31)

x · u =
ρ1ρ2 sin | θ|

d

(
θ̂1x4 + θ̂2x3 − θ̂3x2

)
, (2.32)

and the inverse potential f−1 is written as

f−1 =

(
g− +A B

B g+ +A

)
, (2.33)

g± ≡ x2
α +

(
x1 ±

d

2

)2

+ ρ2 , x2
α ≡ x2

2 + x2
3 + x2

4 , (2.34)

A ≡ ρ4 sin2 | θ|
d2

, B ≡ ρ2

(
cos | θ|+ 2

d
sin | θ|

[
θ̂1z + θ̂2x3 − θ̂3x2

])
, (2.35)

with ρ ≡ ρ1 = ρ2. The action density can be assessed using (2.11). In terms of this notation,

for the k = 1 instanton in the regular gauge (2.13), the logarithmic potential log |f | is

log f± = − log g± , (2.36)

where the subscript ± refers to the position ∓d
2 of the instanton along the x1 axis. For

the k = 2 instanton (2.33), we have

log |f−+| ≡ − log
[
(g− +A) (g+ +A) −B2

]
. (2.37)

2.4 Asymptotics

To understand in details the structure of the k = 2 instanton it is best to work out its

asymptotic form for the case d/ρ≫ 1. For that we use (2.9) in the special case

Fiz = −2U †
B(f ⊗ τ i)B†U , (2.38)

with

B =




0 0

−1 0

0 −1


 . (2.39)

Below, we will show that the field strength Fiz sources the pion-nucleon coupling in the

axial gauge Az = 0 for the quantum fluctuations. The asymptotics is useful for a physical

identification of the coset parameters.

Near the singularity center with x = D, (2.18) approximates to

∆† ≈
(
λ†1 0 u†

λ†2 u
† −2D†

)
, (2.40)

whose null vector U is

U ≈




− 1
ρ1
u†

1
|u|2

1
ρ1
u
(
λ†2u

† + 2ρ1D
†
)

1


DΛ†D†. (2.41)

– 7 –
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From (2.7) and (2.20) it follows that

U ≈




0

1−
(ρ

d

)2 1
2 sin 2|θ| θ̂a(iτ

1τaτ1)(ρ
d

)2
sin |θ| θ̂a(iτ

1τaτ1)


+



O
(ρ

d

)3

O
(ρ

d

)4

O
(ρ

d

)4


 . (2.42)

We have used the explicit parametrization (2.25) and (2.29). We may expand f near the

center X = D,

f |X≈D =

(
1

g+
+ O

(
1
d

)4 −λ1λ2+2x·u
g−g+

+ O
(

1
d

)4

−λ1λ2+2x·u
g−g+

+ O
(

1
d

)4 1
g−

+ O
(

1
d

)2

)
. (2.43)

For X = D, the leading contributions to f11, f12, and f21 are of order 1/d2 while that of

f22 is of order d0.

From (2.39) and (2.42) we have

U †B|X≈D =

(
−1 + O

(ρ
d

)2
,O
(ρ
d

)2
)

≡
(
b
†
1, b

†
2

)
, (2.44)

which yields (2.38)

Fiz|X≈D = −2U †B(f ⊗ τ i)B†U |X≈D

= −2
(
f11b

†
1τ

i
b1 + f12b

†
1τ

i
b2 + f21b

†
2τ

i
b1 + f22b

†
2τ

i
b2

)

= −2
τ i

g+
+ O(d−4) . (2.45)

Thus

F a
iz|X≈D ≈ −2δia 1

g+
(2.46)

A rerun of the argument for the center x = −D yields

F a
iz|X≈−D ≈ −2Ria τ

i

g−
, (2.47)

since U † ∼ (0, 0,1). For asymptotic distances d/ρ ≫ 1 the k = 2 configuration splits into

two independent k = 1 configurations with relative flavor orientation Rab. This separation

makes explicit the physical interpretation of the coset parameters: ρ the instanton size,

d the instanton relative separation, u the inverse or dual separation and R their relative

orientations asymptotically.

3 Baryons in hQCD

Baryons in hQCD are sourced by instantons in bulk. The induced action by pertinent brane

embeddings and its instanton content was discussed in [3]. The 5D effective Yang-Mills

action is the leading terms in the 1/λ expansion of the DBI action of the D8 branes after

integrating out the S4. The 5D Chern-Simons action is obtained from the Chern-Simons

– 8 –
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action of the D8 branes by integrating F4 RR flux over the S4, which is nothing but NC .

The action reads [3, 11]

S = SYM + SCS , (3.1)

SYM = −κ
∫
d4xdz tr

[
1

2
K−1/3F2

µν +M2
KKKF2

µz

]
, (3.2)

SCS =
Nc

24π2

∫

M4×R
ω

U(Nf )
5 (A) , (3.3)

where µ, ν = 0, 1, 2, 3 are 4D indices and the fifth(internal) coordinate z is dimensionless.

There are three things which are inherited by the holographic dual gravity theory: MKK, κ,

and K. MKK is the Kaluza-Klein scale and we will set MKK = 1 as our unit. κ and K are

defined as

κ = λNc
1

216π3
≡ λNca , K = 1 + z2 . (3.4)

A is the 5D U(Nf ) 1-form gauge field and Fµν and Fµz are the components of the 2-form

field strength F = dA − iA ∧ A. ω
U(Nf )
5 (A) is the Chern-Simons 5-form for the U(Nf )

gauge field

ω
U(Nf )
5 (A) = tr

(
AF2 +

i

2
A3F − 1

10
A5

)
, (3.5)

The exact instanton solutions in warped xM space are not known. Some generic prop-

erties of these solutions can be inferred from large λ whatever the curvature. Indeed, since

κ ∼ λ, the instanton solution with unit topological charge that solves the full equations of

motion, follows from the YM part only in leading order. It has zero size at infinite λ. At

finite λ the instanton size is of order 1/
√
λ. The reason is that while the CS contribution

of order λ0 is repulsive and wants the instanton to inflate, the warping in the z-direction

of order λ0 is attractive and wants the instanton to deflate in the z-direction [2, 3].

These observations suggest to use the flat space instanton configurations to leading

order inNcλ, with 1/λ corrections sought in perturbation theory. The latter is best achieved

by rescaling the coordinates and the instanton fields as

xM = λ−1/2x̃M , x0 = x̃0 ,

AM = λ1/2ÃM , A0 = Ã0 ,

FMN = λF̃MN , F0M = λ1/2F̃0M . (3.6)

The corresponding energy density associated to the action (3.3) reads [3]

E = 8π2κ

[
1

16π2

∫
d3x̃dz̃tr F̃ 2

MN

]

+
κ

λ

∫
d3x̃dz̃

[
− z̃

2

6
tr F̃ 2

ij + z̃2tr F̃ 2
iz −

1

2
(∂̃M

̂̃
A0)

2 − 1

32π2a
̂̃
A0tr F̃

2
MN

]
. (3.7)

– 9 –
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All quantities are dimensionless in units of MKK. The U(1) contribution
̂̃
A0 follows from

the equation of motion [3]

�̃
̂̃
A0 =

1

32π2a
tr F̃ 2

MN . (3.8)

The
̂̃
A0 field can be obtained in closed form using (2.11),

̂̃
A0 =

1

32π2a
�̃ log |f | . (3.9)

According to (3.6) both the size of the instanton ρ and the distance d between two instantons

are rescaled, i.e. ρ̃ =
√
λρ and d̃ =

√
λd. While the size ρ̃ is fixed to ρ̃0 (see below) by the

energy minimization process, the distance is not. Therefore, when discussing the energy at

the subleading order, the distance d̃ is always short for
√
λd. It will be recalled whenever

appropriate. The first term in (3.7) is 8π2κ × instanton number, which is identified with

the bare soliton mass. The second term (≡ ∆E) is subleading and corresponds to the

correction to the mass or the interaction energy

∆E =
κ

λ

∫
d3x̃dz̃

[
− z̃

2

6
tr F̃ 2

ij + z̃2tr F̃ 2
iz −

1

2
(∂̃M

̂̃
A0)

2 − 1

32π2a
̂̃
A0tr F̃

2
MN

]

=
κ

6λ

∫
d3x̃dz̃

(
z̃2 − 37π2

24
�̃ log |f |

)
�̃

2 log |f | , (3.10)

where we used the self-duality, tr F̃ 2
ij = 2tr F̃ 2

iz = 1
2tr F̃ 2

MN , and integrated (∂M
̂̃
A0)

2 by part

so that it can be reduced to the form
̂̃
A0tr F̃

2
MN .

3.1 One baryon

The one baryon solution is the k = 1 instanton. This is best seen through the holon-

omy (1.1). Indeed from (2.13) it follows that

f−1 = ρ̃2 + x̃2
M , (3.11)

for k = 1, for which

U(~x) = eiτ ·~xF (~x) , (3.12)

with the Skyrmion profile F (~x) = π|~x|√
~x2+ρ2

. We have set X̃i = 0 by translational symmetry.

We have also set X̃4 = 0 as a finite X̃4 costs energy [3]. Thus

�̃ log f = −4
x̃2

M + 2ρ̃2

(x̃2
M + ρ̃2)2

, (3.13)

�̃
2 log f =

96ρ̃4

(x̃2
M + ρ̃2)4

. (3.14)
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Figure 1. ∆M/Nc: solid (exact) and dotted (numerical).

The mass correction ∆M ≡ ∆E, reads

∆M(ρ) =
κ

6λ

∫
d3x̃dz̃

(
z̃2 +

37π2

4

x̃2
M + 2ρ̃2

(x̃2
M + ρ̃2)2

)
96ρ̃4

(x̃2
M + ρ̃2)4

(3.15)

=
8π2κ

λ

(
ρ̃2

6
+

1

320π4a2

1

ρ̃2

)
. (3.16)

It depends on the size ρ̃ as plotted in figure 1. All integrals in ∆M are analytical, since

�̃ log |f | and �̃
2 log |f | are simple. For k = 2 the expressions for ∆M are more involved

and require numerical unwinding. As a prelude to these numerics, we have carried the

integrals in (3.15) both analytically and numerically as illustrated in figure 1.

The one-instanton stabilizes for

ρ̃0 =

√
1

8π2a

√
6

5
∼ 9.64 , (3.17)

with a mass correction

∆M(ρ̃0 ∼ 9.64) ∼ 0.365 . (3.18)

We recall that the physical instanton size ρ0 = ρ̃0/
√
λ following the unscaling as

detailed above.

3.2 Two baryon

The two baryon solution corresponds to the k = 2 instanton. The corresponding potential

f for the k = 2 instanton is given in (2.33) and yields

tr F̃ 2
µν = �̃

2 log |f |

= −�̃
2 log

[(
g−(x̃M ) +

ρ̃2
1ρ̃

2
2 sin2 | θ|
d̃2

)(
g+(x̃M ) +

ρ̃2
1ρ̃

2
2 sin2 | θ|
d̃2

)

−ρ̃2
1ρ̃

2
2

(
cos | θ| + 2

d̃
sin | θ|

[
θ̂1x̃0 + θ̂2x̃3 − θ̂3x̃2

])2
]
. (3.19)
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Its leading contribution in (3.7) is

8π2κ

[
1

16π2

∫
d3x̃dz̃tr F̃ 2

MN

]
= 2 × 8π2κ ,

as expected by self-duality. To order Ncλ the energy of the 2-baryon system is just 2M0 or

twice the bare soliton mass. There is complete degeneracy in the moduli parameters d̃ and

θa. This degeneracy is lifted at order Ncλ
0, which is the next contribution in (3.7). This

will be detailed below.

Here we recall briefly some labeling for Skyrmion-Skyrmion interaction in the context

of the product ansat, for which most NN-potential were obtained. For 2-Skyrmions at large

relative separation, the ansatz reads

U2(~x) = U(~x+ ~d/2)UU(~x − ~d/2)U † , (3.20)

with U , SU(2) valued as defined in (2.26). For U = 1 the 2-Skyrmions are said to be in the

defensive configuration, while for U = iτx, they are said to be in the combed configuration.

The defensive configuration is maximally repulsive with U2(~x) = U(~x)2 for ~d = 0. The

combed configuration is partially attractive.

For two parallel instantons | θ| = 0 and the instanton action density (3.19) reads

tr F̃ 2
µν = −�̃

2 log
[
g−(x̃M )g+(x̃M ) − ρ̃2

1ρ̃
2
2

]
. (3.21)

The baryon number distribution in space follows from

B(x) =
1

16π2

∫ +∞

−∞
dz trF 2

µν , (3.22)

which integrates to 2. Since the instanton in bulk is localized near z ≈ ρ ≈ 1/
√
λ, we may

approximate the integral by the value of the integrand for z ≈ 0, or B(x) ≈ tr F̃ 2
µν(z ≈

0)/16π2. In figure 2 we show tr F̃ 2
µν for z̃ = x̃3 = 0 and ρ̃1 = ρ̃2 = 9.64 for various

separations d̃ in the (x̃1, x̃2) space for two paralell Skyrmions. The separation is in units of

the size ρ̃0 = 9.64. For small separations a narrow Skyrmion develops on top of the broad

Skyrmion. The configuration is maximally repulsive (defensive Skyrmions).

A paralell and antiparalell Skyrmion (combed Skyrmions) corresponds to the choice

θ1 = θ2 = 0 and θ3 = π
2 or | θ| = π/2. This is a π rotation along x3 in the SO(3)

notation (2.27). The resulting instanton action density (3.19) reads

tr F̃ 2
µν = −�̃

2 log

[(
g−(x̃M ) +

ρ̃2
1ρ̃

2
2

d̃2

)(
g+(x̃M ) +

ρ̃2
1ρ̃

2
2

d̃2

)
− 4

ρ̃2
1ρ̃

2
2

d̃2
x̃2

2

]
. (3.23)

In figure 3 we show the baryon density in the plane (x1, x2) for various separations in units

of the instanton size with ρ̃1 = ρ̃2 = 9.64. For large separation two lumps form along the

x1 axis. For smaller separation the two lumps are seen to form in the orthogonal or x2

direction. In between a hollow baryon 2 configuration is seen which is the precursor of the

donut seen in the baryon number 2 sector of the Skyrme model [19]. The concept of d̃ as
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Figure 2. Defensive Skyrmions: (a) d̃ = 2, (b) d̃ =
√

2, (c) d̃ = 1, (d) d̃ = 10−5

Figure 3. Combed Skyrmions: (a) d̃ = 2.5, (b) d̃ = 1.7, (c) d̃ =
√

2, (d) d̃ = 1

a separation at small separations is no longer physical given the separation taking place in

the transverse direction. What is physical is the dual distance u in the transverse plane.

For two Skyrmions orthogonal to each other, the choice of angles is θ1 = θ2 = 0, θ3 = π
4 .
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Figure 4. Orthogonal Skyrmions: (a) d̃ = 2.5, (b) d̃ = 1.7, (c) d̃ = 1.2, (d) d̃ = 0.6.

The corresponding action density is given by (3.19)

tr F̃ 2
µν = −�̃

2 log

[(
g−(x̃M ) +

ρ̃2
1ρ̃

2
2 sin2 θ3

d̃2

)(
g+(x̃M ) + ρ̃2

2 +
ρ̃2
1ρ̃

2
2 sin2 θ3

d̃2

)

−ρ̃2
1ρ̃

2
2

(
cos θ3 −

2x̃2

d̃
sin θ3

)2 ]
, (3.24)

which is also seen to reduce to (3.21) and (3.23) for θ3 = 0 or π and θ3 = π/2 respectively.

The θ3 = π
4 is our two orthogonal Skyrmions. This configuration is shown in figure (4). For

small separations a narrow Skyrmion develops on top of a broad one, a situation reminiscent

of the Defensive Skyrmion configuration above. This situation can be seen in many other

relative orientations and is somehow generic.

4 Skyrmion-Skyrmion interaction

The Skyrmion-Skyrmion interaction in hQCD is of order Nc/λ and it follows from (3.10)

which is the second term in (3.7). The baryon two minimum energy configuration should

follow by minimizing this contribution in the 6-dimensional coset space ρ, d, θ. This will be

reported elsewhere. Instead, we report on the interaction energy between two Skyrmions

versus their separation for a size fixed in the baryon 1 sector and different relative orien-

tations θa. In the adiabatic quantization scheme, θa are raised to collective coordinates.

They are not fixed by minimization. This approach will be subsumed here. We note that

the mass shift are of order Ncλ
0.

– 14 –
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Figure 5. Skyrmion-Skyrmion interaction in regular gauge.

4.1 General

Consider the case where θ1 = θ2 = 0 and θ3 6= 0, with fixed sizes ρ̃1 = ρ̃2 = ρ̃0. Here ρ̃0 is

the value fixed by minimization in the 1 Skyrmion sector (3.17). In figure (5) we show the

interaction energy (∆E−2∆M)/Nc versus the relative distance d in units of the instanton

size, where

∆E =
κ

6λ

∫
d3x̃dz̃

(
z̃2 − 37π2

24
�̃ log |f |

)
�̃

2 log |f | , (4.1)

|f | =

(
g−(x̃M ) +

ρ̃2
1ρ̃

2
2 sin2 θ3

d̃2

)(
g+(x̃M ) +

ρ̃2
1ρ̃

2
2 sin2 θ3

d̃2

)

−ρ̃2
1ρ̃

2
2

(
cos θ3 −

2x̃2

d̃
sin θ3

)2

. (4.2)

The interaction energy is repulsive for all values of θ3. The repulsion decreases for θ3 in

the range 0 → π/2, that is from the defensive to combed configuration. The combed or

θ3 = π/2 is still repulsive even for small relative distances, as the two Skyrmions separate

in the transverse direction. In figure (6) we show separatly the interaction energy for the

defensive configuration (left) and combed configuration (right). The repulsion is seen to

drop by 3 orders of magnitude.

The core interaction is modified in the singular gauge as we detail in appendix A and

B. In figure (7) we show the analogue of figure (5) in the singular gauge. The switch from

repulsion to attraction follows from the switch from repulsive Coulomb (regular gauge) to

attractive dipole (singular gauge) interactions. The plot is versus d̃ which is the rescaled

distance in units of the rescaled size ρ̃. In the unscaled distance d, the dipole attraction is

of order Nc/λ
4 and subleading.

4.2 Interaction at large separation

To understand the nature of the Skyrmion-Skyrmion interaction to order Nc/λ as given by

the classical instantons in bulk, we now detail it for large separations between the instanton

cores, i.e. d≫ ρ but still smaller than the pion range (which is infinite for massless pions).
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Figure 6. Skyrmion-Skyrmion interaction: Defensive (left) and Combed (right)

Figure 7. Skyrmion-Skyrmion interaction in singular gauge

We recall that the interaction follows from the subleading contribution in (3.7), which can

be split

∆E[f ] = Ncb (C[f ] + cD[f ]) , (4.3)

C[f ] ≡
∫
d3x̃dz̃ z̃2

�̃
2 log |f | , (4.4)

D[f ] ≡ −
∫
d3x̃dz̃ ( �̃

2 log |f | ) 1

�̃
( �̃

2 log |f | ) , (4.5)

with b = 1
6·216π3 and c ≡ 37π2

24 .

For large separations between the cores or d≫ ρ, we have from (2.37)

log |f−+| = − log

[
(g−g+)

(
1 +A

g− + g+
g−g+

+
A2 −B2

g−g+

)]

≈ − log g− − log g+ −A
g− + g+
g−g+

+
B2

g−g+
, (4.6)

after dropping the A2 contribution as it is subleading in ρ/d. We note that after fixing the

size of the single instanton to ρ̃0 and unscaling the distance d̃ as we indicated above, the

expansion ρ̃/d̃ is an expansion in ρ̃0/(
√
λd).
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The Skyrmion-Skyrmion core interaction follows from

V = ∆E[f−+] − ∆E[f−] − ∆E[f+] , (4.7)

after subtraction of the classical self-energies which are of order Ncλ
0. The C[f ] contribu-

tion to the interaction reads

VC = sin2 | θ|VCα + sin2 | θ| θ̂2
1VCβ + sin2 | θ| (θ̂2

2 + θ̂2
3)VCγ + cos2 | θ|VCδ , (4.8)

with

VCα ≡ Ncb
ρ̃4

d̃2

∫
d3x̃dz̃ z̃2

�̃
2

(
g− + g+
g−g+

)
, (4.9)

VCβ ≡ Ncb
ρ̃4

d̃2

∫
d̃3x̃dz̃ z̃2

�̃
2

(
4z̃2

g−g+

)
, (4.10)

VCγ ≡ Ncb
ρ̃4

d̃2

∫
d3x̃dz̃ z̃2

�̃
2

(
4x̃2

2

g−g+

)
, (4.11)

VCδ ≡ Ncb
ρ̃4

d̃2

∫
d3x̃dz̃ z̃2

�̃
2

(
1

g−g+

)
, (4.12)

where the cross term in B2 drops by parity and we have rescaled the variable x̃M/d̃ →
x̃M . Thus g± → x̃2

α +
(
x̃1 ± 1

2

)2
+ ρ̃2/d̃2. All integrals are understood in dimensional

regularization that preserves both gauge and O(4) symmetry. The results are

VCα = −VCβ = −VCγ = Ncb
ρ̃4

d̃2
16π2 , VCδ = 0 . (4.13)

The D[f ] contribution to the interaction reads

VD ≈ −2bcNc

∫
( �̃

2 log g− )
1

�̃
( �̃

2 log g+ ) . (4.14)

The Coulomb propagator 1/�̃ = −1/(4π2|x̃+− x̃−|2) in 4-dimensions. At large separations

|x̃+ − x̃−| ≈ d̃ and (4.14) simplifies to

VD ≈ 128π2 bcNc
1

d2

∣∣∣∣
1

16π2

∫
d3x̃dz̃ �̃

2 log g

∣∣∣∣
2

=
27πNc

2

1

d̃2
, (4.15)

where the || integrates to the baryon charge 1. VD captures the Coulomb repulsion between

two unit baryons in 4 dimensions in the regular gauge. This is not the case in the singular

as we show in appendix B.

We note that after unscaling d̃ =
√
λd, VD ≈ Nc/λ. In regular gauge, this monopole

core repulsion is the Coulomb repulsion between 4-dimensional Coulomb charges. We show

in appendix C that this is the natural extension of the 3-dimensional omega repulsion

at shorter distances in holography. The repulsion dominates the many-body problem at

finite chemical potential as discussed recently in [4, 5]. Indeed, for baryonic matter at

large baryonic density nB, the energy is dominated by the Coulomb repulsion (4.15). The

corresponding effective interaction is

Veff =
1

2

∫
~dx ~dy

(
φ+φ

)
(~x)VD(~x− ~y)

(
φ+φ

)
(~y) , (4.16)

leading to an energy per volume of order Nc n
5/3
B /λ as in [5].
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5 Nucleon-nucleon interaction: core

At large separation, the nucleon-nucleon core interaction can be readily extracted from the

Skyrmion-Skyrmion core interaction (4.8) as it is linear in the SO(3) rotation R. Indeed,

using the standard decomposition [14]

Rab =
1

3
(Rab

T + δabRS) , (5.1)

with

RS = trR , Rab
T = 3Rab − δabtrR , (5.2)

the spin RS and tensor RT contributions respectively, we may decompose the core

potential as

V = V1 + VSRS + V ab
T Rab

T . (5.3)

The scalar V1, spin VS and tensor VT contributions can be unfolded by a pertinent choice

of orientations of the core Skyrmion-Skyrmion interaction. In general,

V = V1 + VS

(
4 cos2| θ| − 1

)
+ V ab

T

[(
6θ̂aθ̂b − 2δab

)
sin2| θ| + 3ǫabcθ̂c sin 2| θ|

]
, (5.4)

after using the SO(3) parametrization (2.27)

Rab = δab cos 2| θ| + 2θ̂aθ̂b sin2| θ| + ǫabcθ̂c sin 2| θ| . (5.5)

The axial symmetry V (θ1, θ2, θ3) = V (θ1, θ3, θ2) implies that the tensor components of

the core satisfy V 22
T = V 33

T , V 12
T = V 31

T , and V 13
T = V 21

T . Thus, V is reduced to

V (θ1, θ2, θ3) = V1 + VS

(
4 cos2| θ| − 1

)
+ (V 11

T − V 22
T )(6θ̂2

1 − 2) sin2| θ|
+(V 12

T + V 13
T )(6θ̂1(θ̂2 + θ̂3)) sin2| θ|) + (V 12

T − V 13
T )(3(θ̂2 + θ̂3) sin 2| θ|)

+(V 23
T + V 32

T )(6θ̂2θ̂3 sin2| θ|) + (V 23
T − V 32

T )(3θ̂1 sin 2| θ|) . (5.6)

In particular,

V (0, 0, 0) = V1 + 3VS , V (0, 0, π/2) = V1 − VS − 2(V 11
T − V 22

T ) , (5.7)

V (π/2, 0, 0) = V1 − VS + 4(V 11
T − V 22

T ) , (5.8)

so that

V1 =
1

4
[V (0, 0, 0) + V (0, 0, π/2) + V (0, π/2, 0) + V (π/2, 0, 0)] , (5.9)

VS =
1

4

[
V (0, 0, 0) − 1

3
(V (0, 0, π/2) + V (0, π/2, 0) + V (π/2, 0, 0))

]
, (5.10)

V 11
T − V 22

T =
1

6
[V (π/2, 0, 0) − V (0, 0, π/2)] . (5.11)

Using (4.9)–(4.12) we deduce the scalar, spin and tensor core contributions in the form

V1 =
1

4
(3VCα + VCβ + 2VCγ + VCδ) + VD = VD ,
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Figure 8. V1, VS , VT in regular gauge

VS =
1

4

(
−VCα − 1

3
VCβ − 2

3
VCγ + VCδ

)
= 0 ,

V 11
T − V 22

T =
1

6
(VCβ − VCγ) = 0 . (5.12)

The off-diagonal tensor VT core contribution vanishes. This is clear from (4.8). Indeed (4.8)

can be decomposed as

V = sin2 | θ|VCα + sin2 | θ| θ̂2
1VCβ + sin2 | θ| (θ̂2

2 + θ̂2
3)VCγ + cos2 | θ|VCδ + VD

= sin2 | θ| (VCα + VCγ) + sin2 | θ| θ̂2
1(VCβ − VCγ) + cos2 | θ|VCδ + VD

=
1

4
(3VCα + VCβ + 2VCγ + VCδ) + VD

+
1

4

(
−VCα − 1

3
VCβ − 2

3
VCγ + VCδ

)(
4 cos2| θ| − 1

)

+
1

6
(VCβ − VCγ)(6θ̂2

1 − 2) sin2| θ| , (5.13)

in agreement with (5.12). In summary

V1 = VD , (5.14)

and all others vanish. For general distances, we plot V1, VS and VT with (5.9)–(5.11) in

figure 8 in the regular gauge. The relative separation d̃ is in units of the core size ρ̃ = 9.64.

In the singular gauge, the VC core contribution to the nucleon-nucleon interaction

remains unchanged while the VD contribution changes. As a result, the spin and tensor

channels remain the same for both regular and singular gauges. The central or scalar

channel V1 = VD changes from repulsiveNc/λd̃
2 (regular) to attractive −Nc/λ

4d̃8 (singular)

asymptotically. The flip is from monopole to dipole as we detail in appendix B. The short

distance repulsion in the regular gauge is the 4-dimensional extension of the 3-dimensional

omega repulsion. In figure (9) we show V1, VS and VT with (5.9)–(5.11) and (B.4) in the

singular gauge.
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Figure 9. V1, VS , VT in singular gauge

6 Nucleon-nucleon interaction: cloud

To assess the nucleon-nucleon interaction beyond the core contribution we need to do a

semiclassical expansion around the k = 2 configuration, thereby including the effects of

pions and vector mesons as quantum fluctuations around the core. We refer to these

contributions as the cloud. The semiclassical expansion around the k = 2 configuration

parallells entirely the same expansion around the k = 1 instanton as detailed in [7]. The

expansion will be carried out in the axial gauge Az = 0 for the fluctuations. This gauge

has the merit of exposing explicitly the pion-nucleon coupling. All cloud calculations will

be carried with the background k = 2 instanton in the regular gauge. Some of the results

in the singular gauge are reported in appendix C.

6.1 Pion

In the axial gauge Az = 0 for the fluctuations, the pion coupling to the flavor instanton

is explicit in bulk. Indeed, following the general expansion in [7] we have for the pion-

instanton linear coupling

S = −κ
∫
d4xdz∂z

(
KF a

zµC
µ,a
)
, (6.1)

with the explicit pion field

Cµ,a ≡ 1

fπ
∂µΠaψ0 , ψ0 =

2

π
arctan z , (6.2)

and fπ = 4κ/π. As noted in [7] all linear meson couplings to the flavor instanton are

boundary-like owing to the soliton character of the k = 2 instanton. Since KFziψ0 is odd

in z, for a static instanton,

S = κ

∫
d4xF a

ziKψ0

∣∣∣
B

∂iΠ
a

fπ
. (6.3)
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Here B = ±zc refers to boundary of the core when using the non-rigid quantization scheme.

To avoid double counting, for z < zc the mesons are excluded in the holographic direction.

zc plays the role of the bag radius. It will be reduced to zc → 0 at the end of all calculations,

making the non-rigid quantization constraint point-like.

The linear pion-2-instanton vertex (6.3) contributes to the energy through second order

perturbation. Specifically,

VΠ =
4κ2K(zc)

2ψ0(zc)
2

2f2
π

∫
d~xd~yF a

iz(~x, zc)〈∂iΠ(~x)a∂jΠ(~y)b〉F b
jz(~y, zc) (6.4)

=
κ2K(zc)

2ψ0(zc)
2

2πf2
π

∫
d~xd~yF a

iz(~x, zc)∂i∂j
1

|~x− ~y|F
a
jz(~y, zc) , (6.5)

for massless pions. At large separations, the field strength F a
iz splits into two single instan-

tons of relative distance d and flavor orientation R. At large relative separation d, (6.5)

simplifies to

VΠ ≈ 9

16πf2
π

Jai
A (0)DijJ

Raj
A (0) , (6.6)

with Dij = (3d̂id̂j − δij)/d
3. The spatial component of the axial vector current JA is

unrotated while JR
A is rotated. From appendix D, its zero momentum limit reads

Jai
A (0) ≡ Jai

A (~q = 0) = −4

3
κK(zc)ψ0(zc)

∫
d~xF a

iz(~x, zc) . (6.7)

The projected potential VΠ yields

〈s1t1s2t2|VΠ|s1t1s2t2〉 =
9

16πf2
π

〈s1t1|Jai
A (0)|s1t1〉Dij〈s2t2|JRAj

A (0)|s2t2〉

≡ 1

16π

(
gA

fπ

)2 1

d3

(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

)
(~τ1 · ~τ2) , (6.8)

where gA = 32κπρ2/3 is the axial-vector charge of the nucleon as detailed in appendix D.

gA ≈ Ncλ
0 in hQCD.

In the Az = 0 gauge, the linear pion-2-instanton vertex (6.1) yields a tensor contribu-

tion to the nucleon-nucleon potential

VT,Π =
1

16π

(
gA

fπ

)2 1

d3
. (6.9)

This is in agreement with the pseudo-vector one-pion exchange potential

VT,Π =
(gπNN/2M)2

4π

1

d3
, (6.10)

if we identify

gπNN

MN
=
gA

fπ
. (6.11)
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This is just the Goldberger-Treiman relation which is also satistified by the holographic

construction in the Az = 0 gauge and for massless pions.

In reaching (6.8) and the relation (6.11) there is a subtlety. Indeed in (6.6) the pion

propagator Dij is supposed to be longitudinal and the axial vector source J ij
A transverse,

so that the contraction vanishes. The subtlety arises from the ambiguity in the axial

vector source at zero momentum and for massless pions as discussed in appendix D. The

contraction is ambiguous through 0/0. The ambiguity is lifted by the order of limits detailed

in appendix D, which effectively amounts to a longitudinal component of the axial vector

source at zero momentum. This result is independently confirmed by using the strong

coupling source theory discussed in appendix C.

Finally, the pion coupling (6.3) in the axial gauge is pseudoscalar and strong and of

order
√
Nc/λ. The reader may object that this conclusion maybe at odd with naive 1/Nc

power counting whereby the pseudovector coupling is of order
√
Nc/Nc ≈ 1/

√
Nc with the

extra 1/Nc suppression brought about by the γ5 in the nucleon axial vector source [14]. In

strongly coupled models such as hQCD the nucleon source is of order N0
c not 1/Nc, and yet

chiral symmetry is fully enforced in the nucleon sector. hQCD is a chiral and dynamical

version of the static Chew model of the ∆ for strong coupling [20]. Also, the reader may

object that the one-pion iteration which is producing a potential of order Nc/λ, may cause

an even stronger correction by double iteration of order (Nc/λ)2 and so on. This does not

happen though, since the direct and crossed diagram to order (Nc/λ)2 cancel at strong

coupling. The same cancellation is at the origin of unitarization in πN → πN scattering

(Bhabha-Heithler mechanism).

6.2 Axials

The linear vertex (6.1) also couples vector and axial vector mesons to the 2-instanton

solution at the core in bulk. For instance, the axial-vector meson contribution follows

from (6.1) by inserting

Cµ,a ≡ aa,n
µ ψ2n , (6.12)

so that

S = 2κ

∫
d4x

(
KF

b,zµab,n
µ ψ2n

) ∣∣∣
z=zc

. (6.13)

The sum over n is subsumed. We have used the fact that KFziψ2n is odd in z (axial

exchange) and that the surface contribution at z = ∞ is zero since F b
zν ∼ δ(z) is localized

in bulk to leading order in 1/λ.

In second order perturbation, (6.13) contributes a static potential

VA = 2κ2K(zc)
2ψ2n(zc)ψ2m(zc)

∫
d~xd~yF a

iz(~x, zc)∆
mn,ab
ij F b

jz(~y, zc) . (6.14)

At large separations, the field strength F a
iz splits into two single instantons of relative

distance d and flavor orientation R = RT
1R2. At large relative separation d, (6.14)
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simplifies to1

VA ≈ 9

16π

∑

n

Jai
A (0)

(
ψ2n

ψ0

)2(
−δij +

∂i∂j

m2
2n

)
e−m2nd

d
JRaj

A (0)

=
9

16π

∑

n

Jai
A (0)

(
ψ2n

ψ0

)2 [(
1 +

2

m2nd
+

3

m2
2nd

2

)
d̂id̂j

−δij
(

1 +
1

m2
2nd

2

)]
e−m2nd

d
JRaj

A (0) , (6.15)

where Jai
A (0) is defined in (6.7) and the spatial component of the axial vector current JA

is unrotated while JR
A is rotated. The projected potential VA yields

〈s1t1s2t2|VA|s1t1s2t2〉

≈ g2
A

16π

∑

n

(
ψ2n

ψ0

)2

e−m2nd

(
−1

d
− 1

m2
2nd

3

)
(~σ1 · ~σ2) (~τ1 · ~τ2)

+
g2
A

16π

∑

n

(
ψ2n

ψ0

)2

e−m2nd

(
1

d
+

2

m2nd2
+

3

m2
2nd

3

)
(~σ1 · d̂)(~σ2 · d̂) (~τ1 · ~τ2)

≈ g2
A

16π

∑

n

(
ψ2n

ψ0

)2 e−m2nd

d

[
(~σ1 · d̂)(~σ2 · d̂) − (~σ1 · ~σ2)

]
(~τ1 · ~τ2) , (6.16)

which contributes to the spin VS,A and tensor part VT,A of the NN interaction. Specifically,

VS,A ≈
∑

n

G2
SA,2n

e−m2nd

4π d
, VT,A ≈

∑

n

G2
TA,2n

e−m2nd

4π d
,

GSA,2n ≡ −gAψ2n√
6ψ0

∼ gAm2n/
√
κ , GTA,2n ≡ gAψ2n√

12ψ0

∼ gAm2n/
√
κ , (6.17)

with GSA,2n ≈
√
Nc/λ and GTA,2n ≈

√
Nc/λ the spin and tensor couplings of the tower

of axials to the nucleon.

6.3 Vectors

For the vector mesons the time component F0z contribution is leading in Nc compared to

the space component Fiz . This is the opposite of the axial vector contribution. For the

SU(2) part (rho, rho’, . . . ), we have

VV =
1

2π

∑

n

κ2K(zc)
2ψ2

2n−1(zc)

∫
d~xd~yF a

0z(~x, zc)
e−m2n−1|~x−~y|

|~x− ~y| F a
0z(~y, zc)

≈ 1

4π

∑

n

Jaψ2
2n−1

e−m2n−1d

d
JRa , (6.18)

where Ja ≡
∫
d~x2κKF a

z0

∣∣∣
z=zc

is the unrotated angular momentum in [7]. We note that

R = RT
1 R2 and that Rab

2 J
b = −Ia

2 where Ia
2 is the unrotated isovector charge of the nucleon

1For simplicity we often omit |z=zc
and ψn ≡ ψn(zc).
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labelled 2. The same holds for label 1. Thus

〈s1t1s2t2|VV |s1t1s2t2〉 ≈
∑

n

1

4
ψ2

2n−1

e−m2n−1d

4π d
(~τ1 · ~τ2) , (6.19)

which is seen to contribute to the isospin part of the central potential

V −
1,V ≈

∑

n

G2
1V,2n−1

e−m2n−1d

4π d
, (6.20)

with G1V,2n−1 = ψ2n−1/2 ≈ 1/
√
Ncλ. This contribution is subleading in the potential.

Similarly, the U(1) vector contribution part (omega, omega’, . . . ) reads

VbV ≈ N2
c

16π

∑

n

Bψ2
2n−1

e−m2n−1d

d
B =

N2
c

4

∑

n

ψ2
2n−1

e−m2n−1d

4πd
, (6.21)

where B ≡
∫
d~x 4

Nc
κKF̂z0

∣∣∣
z=zc

is the baryon number introduced in [7]. This contribution

to the central potential is leading

V1,bV ≡ VbV ≈
∑

n

G2
bV ,2n−1

e−m2n−1d

4π d
, (6.22)

GbV ,2n−1
≡ Nc

2
ψ2n−1 , (6.23)

with GbV ,2n−1
≈
√
Nc/λ.

For completeness, we quote the spatial contributions from the vectors, both of which

are subleading in the potential. The SU(2) vector meson contribution is

V −
V = 2κ2K(zc)

2ψ2n−1(zc)ψ2m−1(zc)

∫
d~xd~yF a

iz(~x, zc)∆
mn,ab
ij F b

jz(~y, zc) . (6.24)

At large separations, the field strength F a
iz splits into two single instantons of relative

distance d and flavor orientation R = RT
1 R2. At large relative separation d, (6.14) simplifies

to

V −
V ≈ 9

16π

∑

n

Jai
V (0) (ψ2n−1)

2

(
−δij +

∂i∂j

m2
2n−1

)
e−m2n−1d

d
JRaj

A (0)

=
9

16π

∑

n

Jai
V (0) (ψ2n−1)

2

[(
1 +

2

m2n−1d
+

3

m2
2n−1d

2

)
d̂id̂j

−δij
(

1 +
1

m2
2n−1d

2

)]
e−m2n−1d

d
JRaj

V (0) , (6.25)

where Jai
V (0) ≡ −(4/3)κK

∫
d~xF a

iz and the spatial component of the vector current JV is

unrotated while JR
V is rotated. The projected potential V ′

V yields

〈s1t1s2t2|V −
V |s1t1s2t2〉

≈ g2
V

16π

∑

n

(ψ2n−1)
2 e−m2n−1d

(
−1

d
− 1

m2
2n−1d

3

)
(~σ1 · ~σ2) (~τ1 · ~τ2)
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+
g2
V

16π

∑

n

(ψ2n−1)
2 e−m2n−1d

(
1

d
+

2

m2n−1d2
+

3

m2
2n−1d

3

)
(~σ1 · d̂)(~σ2 · d̂) (~τ1 · ~τ2)

≈ g2
V

16π

∑

n

(ψ2n−1)
2 e

−m2n−1d

d

[
(~σ1 · d̂)(~σ2 · d̂) − (~σ1 · ~σ2)

]
(~τ1 · ~τ2) , (6.26)

with Jai
V (0) = gV R

ai. To leading order gV = O(1/Nc),

Jai
V (0) =

2

3

∫
d~xκKF a

zi(~x, z)1

∣∣∣∣
z=B

=
2

3

∫
d~xκK R

ai 4ρ2

(ξ2 + ρ2)2
1

∣∣∣∣
z=B

= 0 , (6.27)

since KF a
zi(~x, z)1 is even in z. (6.26) contributes to both the spin V −

S,V and tensor part

V −
T,V of the NN interaction,

V −
S,V ≈ 1

4π

∑

n

G2
SV,2n−1

e−m2n−1d

d
, V −

T,V ≈ 1

4π

∑

n

G2
TV,2n−1

e−m2n−1d

d
,

GSV,2n ≡ −gV ψ2n−1√
6

, GTV,2n ≡ gV ψ2n−1√
12

. (6.28)

The holographic description of the nucleon-nucleon potential is consistent with the meson-

exchange potentials in nuclear physics. Holography allows a systematic organization of

the NN potential in the context of semiclassics, with the NN interaction of order Nc/λ in

leading order.

7 Holographic NN potentials

In general, the NN potential in holography is composed of the core and the cloud contribu-

tions to order Nc/λ. For non-asymptotic distances, both the core and cloud contributions

have a non-linear dependence on the rotation matrix R(U), making the projection on the

NN channel involved. Formally, the potential (core plus cloud) can be expanded using the

irreducible representations of SU(2). Specifically

V (d,U) =

∞∑

j=0

+j∑

m=−j

Vjm(d)Dj
mm(U) , (7.1)

whereDj
m,m′(U) are U-valued Wigner functions. For k = 2 the azimuthal symmetry restrics

m′ = m with Vjm = Vj,−m. In particular

Vjm(d) =
2π2

(2j + 1)

∫
dU V (d,U)Dj ∗

m,m(U) . (7.2)

The projection on the NN channel follows by sandwiching (7.1) between the normalized

NN states D1/2(1) ⊗D1/2(2). While straightforward, this procedure is involved owing to

the complicated nature of the k = 2 instanton both in the core and in the cloud on R(U).

In general

V (d,U) = Vcore(d,U) + Vcloud(d,U) . (7.3)
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Vcore(d,U) is defined as

Vcore(d,U) ≡ ∆E[f−+] − ∆E[f−] − ∆E[f+] ,

∆E[f ] =
κ

6λ

∫
d3x̃dz̃

(
z̃2 − 37π2

24
�̃ log |f |

)
�̃

2 log |f | , (7.4)

where

log |f−+| ≡ − log
[
(g− +A) (g+ +A) −B2

]
, (7.5)

log |f±| = − log g± , (7.6)

g± =
∑

α=2,3,4

x̃2
α +

(
x̃1 ±

d̃

2

)2

+ ρ̃2 , A =
ρ̃4 sin2 | θ|

d̃2
, (7.7)

B = ρ̃2

(
cos | θ|+ 2

d̃
sin | θ|

[
θ̂1z̃ + θ̂2x̃3 − θ̂3x̃2

])
. (7.8)

Vcloud(d,U) is defined as

Vcloud(d,U) ≡ 2κ2K2
∑

n

ψ2
n

∫
d~xd~y (7.9)

×
[
F a

iz(xM ;−+)∆ij
n (~x− ~y)F a

iz(yM ;−+) + F̂0z(xM ;−+)∆00
n (~x− ~y)F̂0z(yM ;−+)

−2F a
iz(xM ;−)∆ij

n (~x− ~y)F a
jz(yM ;−) − 2F̂0z(xM ;−)∆00

n (~x− ~y)F̂0z(yM ;−)
]∣∣∣

z=zc

,

where F a
iz(xM ;−) and F a

iz(xM ;−+) are the field strengths of the k = 1 and the k = 2

SU(2) instanton respectively,

F a
iz(xM ;−) = −2δaiτ

a ρ2

(ξ2− + ρ2)2
, (7.10)

F a
iz(xM ;−+) = −2δaiU

†
B (f−+ ⊗ τa) B

†U , (7.11)

B
† =

(
0 −1 0

0 0 −1

)
, f−1

−+ =

(
g− +A B

B g+ +A

)
,

g± ≡ x2
α +

(
x1 ±

d

2

)2

+ ρ2 , x2
α ≡ x2

2 + x2
3 + x2

4 ,

A ≡ ρ4 sin2 | θ|
d2

, B ≡ ρ2

(
cos | θ|+ 2

d
sin | θ|

[
θ̂1z + θ̂2x3 − θ̂3x2

])
,

(
λ†1

d
2τ

1 − x† ρ2

d sin| θ| θ̂aτ
aτ1

λ†2
ρ2

d sin| θ| θ̂aτ
aτ1 −d

2τ
1 − x†

)
U = 0 , U †U = 1 .

The U(1) fields F̂z0(xM ;−+) = ∂zÂ0(xM ;−+) and F̂z0(xM ;−) = ∂zÂ0(xM ;−) follow from

Â0(xM ;−+) =
1

32π2a
� log |f−+| , Â0(xM ;−) =

1

32π2a
� log |f−| . (7.12)

The propagators are defined as

∆ij
n (~x− ~y) = (−δij + ∂̂i∂̂j)

e−mn|~x−~y|

4π |~x− ~y| , ∆00
n (~x− ~y) =

e−mn|~x−~y|

4π |~x− ~y| . (7.13)
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If we were to saturate (7.1) by j = 0, 1 which is exact asymptotically as we have shown

both for the core and cloud, then the projection procedure is much simpler. In particular,

the NN potential simplifies to

VNN = V +
1 + ~τ1 · ~τ2 V −

1 + ~σ1 · ~σ2

(
V +

S + ~τ1 · ~τ2 V −
S

)
(7.14)

+
(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

) (
V +

T + ~τ1 · ~τ2 V −
T

)
, (7.15)

with the core contributions

V +
1,core =

1

4
[V (0, 0, 0) + 2V (0, 0, π/2) + V (π/2, 0, 0)] , (7.16)

V −
S,core =

1

4

[
V (0, 0, 0) − 2

3
V (0, 0, π/2) − 1

3
V (π/2, 0, 0)

]
, (7.17)

V −
T,core = V 11

T − V 22
T =

1

6
[V (π/2, 0, 0) − V (0, 0, π/2)] , (7.18)

as detailed above. The cloud contributions V1, VS and VT remain the same. At large

distances d the core contribution is dominant and repulsive in the regular gauge (4.15)

V +
1,core ≈

27πNc

2λ

1

d2
, (7.19)

and subdominant and attractive in the singular gauge (B.7)

V +
1,core ≈ −81πNc

λ4

ρ6

d8
. (7.20)

The dominant cloud contributions are

V +

1,bV ≈
∑

n

G2
1bV ,2n−1

e−m2n−1d

4π d
, G

1bV ,2n−1
≡ Nc

2
ψ2n−1 ∼

√
Nc

λ
, (7.21)

V −
S,A ≈

∑

n

G2
SA,2n

e−m2nd

4πd
, GSA,2n ≡ −gAψ2n√

6ψ0

∼
√
Nc

λ
, (7.22)

V −
S,V ≈

∑

n

G2
SV,2n−1

e−m2n−1d

4πd
, GSV,2n ≡ −gV ψ2n−1√

6
∼ 1√

λNc
(7.23)

V −
T,A ≈

∑

n

G2
TA,2n

e−m2nd

4πd
, GTA,2n ≡ gAψ2n√

12ψ0

∼
√
Nc

λ
, (7.24)

V −
T,V ≈

∑

n

G2
TV,2n−1

e−m2n−1d

4πd
, GTV,2n ≡ gV ψ2n−1√

12
∼ 1√

λNc
, (7.25)

V −
T,Π ≈ 1

16π

(
gA

fπ

)2 1

d3
∼ Nc

λ
. (7.26)

from (6.9), (6.17), (6.22), and (6.28). To order Nc/λ we note that V −
1 = V +

S = V +
T = 0.

The relative vector-to-pion contribution to the tensor potential, can be assessed asymp-

totically. For a realistic estimate, we make the pion massive. Thus

V −
T,A

V −
T,Π

≈
1
4πG

2
TA,2e

−m2d

1
48π

(
gAmπ

fπ

)2
e−mπd

≈
(
fπψ2

mπψ0

)2

e(mπ−m1)d ≈ 60.8 e(mπ−m1)d (7.27)

with ψ2/ψ0 ∼ 11.4, fπ ∼ 93MeV and mπ ∼ 136MeV.
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8 Conclusions

We have extended the holographic description of the nucleon suggested in [3] to the two

nucleon problem. In particular, we have shown how the exact k = 2 ADHM instanton

configuration applies to the NN problem. The NN potential is divided into a short distance

core contribution and a large distance cloud contribution that is meson mediated. This is

a first principle description of meson exchange potentials sucessfully used for the nucleon-

nucleon problem in pre-QCD [21].

The core contribution in the regular gauge is of order Nc/λ. It is Coulomb like in

the central channel. Remarkably, the repulsion is 4-dimensional Coulomb, a hallmark of

holography. This repulsion dominates the high baryon density problem in holography as

discussed recently in [4, 5]. The dominant Coulomb repulsion is changed to subdominant

dipole attraction for instantons in the singular gauge.

We have shown in the context of semiclassics, that the meson-instanton interactions

in bulk is strong and of order
√
Nc/λ. In the Born-Oppenheimer approximation they

contribute to the potentials to order Nc/λ. These cloud contributions dominate at large

distances. The central potential is dominated by a tower of omega exchanges, the tensor

potential by a tower of pion exchanges, while the spin and tensor potentials are dominated

by a tower of axial-vector exchanges. The isovector exchanges are subdominant at large Nc

and strong coupling. Holography, fixes the potentials at intermediate and short distances

without recourse to adhoc form factors [21] or truncation as in the Skyrme model [22].

The present work provides a quantitative starting point for an analysis of the NN

interaction in strong coupling and large Nc. For a realistic comparison with boson exchange

models, we need to introduce a pion mass. It also offers a systematic framework for

discussing the deuteron problem, NN form factors and NN-meson and NN-photon emissions

in the context of holography. We plan to address some of these issues next.

Acknowledgments

We thank Pierre Van Baal, Tamas Kovacs, Larry McLerran and Sang-Jin Sin for discus-

sions. This work was supported in part by US-DOE grants DE-FG02-88ER40388 and

DE-FG03-97ER4014.

A Instantons in singular gauge

The k = 1 instanton in the singular gauge follows from (2.8) through a gauge transformation

g−1 = ξ̂ = ξ/|ξ| which is singular at ξ = x − X = 0. This is achieved through the shift

U → Ug, which amounts in general to the new inverse potential 1/f = 1 + ρ2/ξ2M . The

corresponding action density is

trF 2
MN = �

2 log f =
96ρ4

((xM −XM )2 + ρ2)4
− 16π2δ(xM −XM ) . (A.1)

The instanton in the singular gauge is threaded by an antiinstanton of zero size at its

center. Its topological charge is strictly speaking zero. It is almost 1 if the center x = X is
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excluded. This point is usually subsumed. Singular instantons have more localized gauge

fields than regular instantons.

The ADHM solution for k = 2 in singular gauge is not known. Following the k = 1

argument, we may seek it from the regular gauge by applying a doubly singular gauge

transformation

g−1 ≡ g−1
+ g−1

− = ξ̂+ ξ̂− , (A.2)

which is singular at the centers ξ± = x ± D = 0 in quaternion notations. This amounts

to shifting U → Ug in the ADHM construction. We guess that (A.2) yields the new

inverse potential

f−1 → f−1

(|x−D||x+D|) , (A.3)

in the singular gauge. As a result, the instanton topological charge is

trF 2
MN = �

2 log f → �
2 log f − 16π2 (δ(ξ+M ) + δ(ξ−M )) . (A.4)

The k = 2 ADHM density is now threaded by two singular anti-instantons at ξ± = 0.

Singular instantons have more localized gauge fields AM than regular instantons. While

this point is of relevance for gauge variant quantitities, it is irrelevant for gauge invariant

quantities with the exception of the topological charge. This point is important for the

central nucleon-nucleon potential as we now explain.

B Core in singular gauge

In the singular gauge we substitute |f | as (A.3), which results in

� log |f | → � log |f | + 4

ξ̃2+
+

4

ξ̃2−
, (B.1)

�
2 log |f | → �

2 log |f | − 16π2
(
δ(ξ̃+M ) + δ(ξ̃−M )

)
. (B.2)

This gives extra contributions in addition to the result in regular gauge after the subtraction

of the self-energy

∆E → ∆E + ∆Es ,

∆Es ≡
( κ

6λ

)(37π2

24

)∫
d3x̃dz̃

×
[
32π2

{
�̃ log |f±|

(
δξ̃+M ) + δ(ξ̃−M )

)
− �̃ log |f+| δ(ξ̃+M ) − �̃ log |f−| δ(ξ̃−M )

}

+16π2

(
δ(ξ̃−M )

4

ξ̃2+
+ δ(ξ̃+M )

4

ξ̃2−

)]
, (B.3)

which comes from the second term in (4.1) while the first term in (4.1) remains the same.

f±, f+, and f− are short for the expressions in the regular gauge in (2.36)–(2.37). Thus

∆Es =
Nc27π

8

[∫
d3x̃dz̃

[
�̃ log |f |

(
δ(ξ̃+M ) + δ(ξ̃−M )

) ]
+

16

ρ̃2
+

4

d̃2

]
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=
Nc27π

2

{
4

ρ̃2
+

1

d̃2

− 2d̃2
[
d̃6(2d̃4 + 5d̃2ρ̃2 + 4ρ̃4) + d̃4ρ̃2 cos2 |θ| (−2d̃4 − 4d̃2ρ̃2 − 3ρ̃4 cos(2 |θ|))

+2d̃4ρ̃2(d̃4 + 4d̃2ρ̃2 + 5ρ̃4) sin2 |θ|+ d̃2ρ̃6(3d̃2 + 8ρ̃2) sin4 |θ| + 2ρ̃10 sin6 |θ|
]

∇ · ρ̃2
[
d̃4(d̃2 + ρ̃2) − d̃4ρ̃2 cos2 |θ| + d̃2ρ̃2(d̃2 + 2ρ̃2) sin2 |θ| + ρ̃6 sin4 |θ|

]2}
(B.4)

= −
(
Nc27π

2λ

)
1 + 4 cos(2 |θ|)

d2
+ O(d−4) (d≫ 1) . (B.5)

For large d, the monopole contribution in (B.4) is cancelled by the monopole contribu-

tion (4.15) in the regular gauge. This cancellation leads to a dipole attraction in the

singular gauge.

The net dipole attraction in the singular gauge is best seen by noting that (4.14) now

reads

VD ≈ −2bcNc

∫ (
�̃

2 log
(
1 + ρ̃2/ξ̃2+

)) 1

�̃

(
�̃

2 log
(
1 + ρ̃2/ξ̃2−

))
, (B.6)

where x̃± refers to the shifted instanton positions. For large separations d̃/ρ̃ ≫ 1, the

leading contribution to VD is

VD ≈ −768π2 bcNc
ρ̃6

d̃8
= −81πNc

ρ̃6

d̃8
, (B.7)

by repeated use of the 4-dimensional formulae

�
1

ξ2n
= −4π2 δn1 δ

4(ξ) + 2n(2(n + 1) − 4)
1

ξ2(n+1)
. (B.8)

This contribution is of order Nc/λ
4 following the unscaling of d̃ =

√
λd. (B.7) is dipole-like

and attractive. As expected, the threading antiinstanton in the singular gauge cancels the

leading Nc/λ repulsive monopole contribution in 4-dimensional Coulomb’s law, resulting

in the attractive dipole-like contribution (van der Waals).

C Strong source theory

In this appendix, we check our cloud calculation in the singular gauge using the strong

coupling source theory used for small cores in [20, 23] and more recently in holography

in [6]. This method provides an independent check on our semiclassics in the k = 2 sector.

The energy in the leading order of λ is

E = κ tr

∫
d3xdz

(
1

2
K−1/3F 2

ij +KF 2
iz

)
+
κ

2

∫
d3xdz

(
1

2
K−1/3F̂ 2

ij +KF̂ 2
iz

)
. (C.1)

where, in the region 1 ≪ ξ,

Â0 ≈ − 1

2aλ
(G− +G+) , (C.2)
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Aa
i ≈ −2π2ρ2

((
ǫiaj∂+j − δia∂+Z

)
G+ +Rab

(
ǫibj∂−j − δib∂−Z

)
G−
)
, (C.3)

Aa
z ≈ −2π2ρ2

(
∂+aH+ +Rab∂−bH−

)
, (C.4)

with

G± ≈ κ

∞∑

n=1

ψn(z)ψn(±Z)Yn

(∣∣~x− ~X±
∣∣
)
, (C.5)

H± ≈ κ

∞∑

n=0

φn(z)φn(±Z)Yn

(∣∣~x− ~X±
∣∣
)
, (C.6)

φ0(z) ≡
1√

κπK(z)
, φn(z) =

1√
λn
∂zψn(z) (n = 1, 2, 3, . . .) , (C.7)

Yn

(∣∣~x− ~X±
∣∣
)
≡ −e

−
√

λn

∣∣~x− ~X±

∣∣

4π
∣∣~x− ~X±

∣∣ , ∂±a ≡ ∂

∂Xa
±
, ∂±Z ≡ ∂

∂Z±
. (C.8)

C.1 Pion

The pion contribution stems from

EΠ =
κ

2

∫
d3xdzK (∂iA

a
z) (∂iA

a
z) , (C.9)

where

Aa
z ≈ −2π2ρ2

(
∂+aH+ +Rab∂−bH−

)
, (C.10)

with φ0(z) only. After subtracting the self-energy the pion interaction energy (VΠ) is

VΠ = κ
(
2π2ρ2

)2
Rab

∫
d3xdzK (∂i∂+aH+) (∂i∂−bH−)

≈ 1

2 32π

Ncλρ
4

d3
Rab

(
d̂ad̂b −

δab

3

)
, (C.11)

after using 2∂a = −∂±a and dropping the surface terms. ~X+ = − ~X− =
~d
2 and Zc ≈ 0. The

matrix element of (C.11) in the 2-nucleon state is

〈s1s2t1t2|VΠ|s1s2t1t2〉 =
1

235π

Ncλρ
4

d3

(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

)
(~τ1 · ~τ2)

≡ 1

4M2

g2
πNN

4π

1

d3

(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

)
(~τ1 · ~τ2) , (C.12)

after using 〈s1s2t1t2|Rab|s1s2t1t2〉 = 1
9σ

a
1σ

b
2~τ1 ·~τ2. The last equality follows from the canon-

ical πN pseudovector coupling. Thus

(gπNN

M

)2
=

8Ncλρ
4

35
=

(
ĝA

fπ

)2

, (C.13)

where ĝA = 64
3 κπρ

2 obtained in [6], and f2
π = 4κ/π. This is just the Goldberger-Treiman

relation following from the NN interaction using the strongly coupled source approxima-

tion [6]. As noted in appendix D, our normalization of the axial-vector current appears to

be twice the normalization of the same current used in [6].
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C.2 Omega

The ω contribution stems from

EbV =
κ

2

∫
d3xdzK

(
∂zÂ0

)(
∂zÂ0

)
, (C.14)

where

Â0 ≈ − 1

2aλ
(G− +G+) . (C.15)

After subtracting the self-energy the ω interaction energy (VbV ) is

VbV =
κ2ψn(Z+)ψn(Z−)m2

2n−1

(2aλ4π)2

∫
d~x

e−m2n−1(|~x− ~X−|+|~x− ~X+|)

|~x− ~X−||~x− ~X+|
(C.16)

≈ N2
c

(8π)2
ψ2

nm
2
2n−1

∫
dr(4πr2)

e−m2n−1(r+d)

rd
(C.17)

≈ Nc

4

∑

n

ψ2
2n−1

e−m2n−1d

4πd
, (C.18)

where we used

κ

∫
dzK(z)∂zψn(z)∂zψm(z) = m2

2n−1δnm . (C.19)

The result is in agreement with (6.21). At large separations, the strongly coupled source

theory and the semiclassical quantization yields the same results. This outcome is irre-

spective of the use of the singular gauge (strong coupling) or regular gauge (semiclassics).

This a consequence of gauge invariance.

At short distances, gauge invariance is upset by the delta-function singularities present

in the singular gauge. Indeed, for ρ≪ ξ ≪ 1 the omega contribution stems from

EbV =
κ

2

∫
d3xdzK

(
∂zÂ0

)(
∂zÂ0

)
, (C.20)

with now K ≈ 1 and

Â0 ≈ − 1

2aλ
(Gflat

− +Gflat
+ ) , (C.21)

Gflat
± = − 1

4π2

1

ξ2±
, (C.22)

from [6]. After subtracting the self-energy the ω interaction energy (V ′
bV ) is

V ′
bV =

κ

(2aλ4π)2

∫
d~xdz

4z2

(
(x1 − d/2)2 + x2

α

)2 (
(x1 + d/2)2 + x2

α

)2

=
27Nc

2πλd2

∫
d~xdz

z2

(
(x1 − 1/2)2 + x2

α

)2 (
(x1 + 1/2)2 + x2

α

)2

≈ 27πNc

4λd2
. (C.23)
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We have rescaled the variable xM → xM/d in the second line and carried numerically the

integration through

∫
d~xdz

z2

(
(x1 − 1/2)2 + x2

α

)2 (
(x1 + 1/2)2 + x2

α

)2 ≈ 4.9348 ≈ π2

2
. (C.24)

The omega repulsion at short distance is about VbV /2 in (4.15). The discrepancy may be

due to the singularities introduced in the singular gauge and/or the approximation in the

matching region ρ≪ ξ ≪ 1. It is worth noting that the standard omega repulsion at large

ditances (C.18) transmutes to a 4-dimensional Coulomb repulsion in holography.

D Axial form factor

The effective action for the SU(2)-valued axial vectors to order ~
0 follows from [7]

Seff [A a
µ] =

3∑

b=1

∞∑

n=1

∫
d4x

[
− 1

4

(
∂µa

b,n
ν − ∂νa

b,n
µ

)2
− 1

2
m2

an(ab,n
µ )2

−κKF
b,zµ

A
b
µ(ψ0 − αanψ2n)

∣∣∣
z=B

+ aanm2
anab,n

µ A
b,µ − κKF

b,zµab,n
µ ψ2n

∣∣∣
z=B

]
, (D.1)

The first line is the free action of the massive axial vector meson which gives the meson

propagator

∆mn,ab
µν (x) =

∫
d4p

(2π)4
e−ipx

[−gµν − pµpν/m
2
an

p2 +m2
an

δmnδab

]
, (D.2)

in Lorentz gauge. The rest are the coupling terms between the source and the instanton:

the second line is the direct coupling and the last line corresponds to the coupling mediated

by the SU(2) (a, a’, . . . ) vector meson couplings,

κKF
b,zµab,n

µ ψ2n , (D.3)

which is large and of order 1/
√

~ since ψ2n ∼
√

~. When ρ is set to 1/
√
λ after the book-

keeping noted above, the coupling scales like λ
√
Nc, or

√
Nc in the large Nc limit taken

first

The direct coupling drops by the sum rule

∞∑

n=1

αanψ2n = ψ0 =
2

π
arctan z, (D.4)

following from closure in curved space

δ(z − z′) =
∞∑

n=1

κψn(z)ψn(z′)K−1/3(z′) . (D.5)
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in complete analogy with VMD for the pion [11] and the electromagnetic baryon form

factor [7]. It follows form (D.4) that

∞∑

n=1

αanψ2n(zc) =
1

2

∫ zc

−zc

dz∂zψ0(z) =
κ

π

∫ zc

−zc

dzφ0(z) . (D.6)

The axial vector contributions at the core sum up to the axial zero mode.

The iso-axial current is,

Jµ
A,b(x) = −

∑

n,m

m2
anaanψ2n

∫
d4y Qb

ν(y, z)∆νµ
mn(y − x)

∣∣∣
z=B

, (D.7)

with

Qb
ν(y, z) ≡ κKF

b
zν(y, z) . (D.8)

The static axial-iso-vector form factor follows readily in the form

Jbi
A (~q) =

∫
d~xei~q·~xJbi

A (x)

= (δij − q̂iq̂j)

∫
d~xei~q·~x

∑

n

αanm2
an

~q 2 +m2
an

ψ2n(z)Qb
j(~x, z)

∣∣∣
z=B

, (D.9)

and is explicitly transverse for massless pions. The zero momentum limit of the transverse

momentum projector is ambiguous owing to the divergence of the spatial integrand for

~q = ~0. We use the rotationally symmetric limit with the convention (δij − q̂iq̂j) → 2δij/3.

Thus

Jbi
A (0) =

2

3

∫
d~x κKF

b
zi(~x, z)ψ0(z)

∣∣∣
z=B

, (D.10)

by the sum rule (D.6). Since the rotated instanton yields
∫
d~xF

R,a
zi = Rai 4π2ρ2

√
z2
c + ρ2

, (D.11)

the spatial component of the axial-vector reads

JRbi
A (0) =

32κπρ2

3
(1 + z2

c )
arctan(zc)√
ρ2 + z2

c

Rbi , (D.12)

In the nucleon state

〈s′t′|JRbi
A (0)|st〉 =

32κπρ2(1 + z2
c )

9
√
ρ2 + z2

c

arctan(zc)(σ
b)ss

′

(τ i)tt
′

≡ 1

3
gA(σb)ss

′

(τ i)tt
′

, (D.13)

where we used 〈s′t′|Rbi|st〉 = −1
3(σb)ss

′
(τ i)tt

′
. Thus

gA =
32κπρ2(1 + z2

c )

3
√
ρ2 + z2

c

arctan(zc) ≈
32

3
κπρ2 , (D.14)

where the limit ρ → 0 is followed by zc → 0. It is 2 times ĝA = 16
3 κπρ

2 as quoted in [6].

This discrepancy maybe traced back to a factor of 2 discrepancy in the normalization of

the axial-vector current in [6].
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